COMPUTING

PRACTICES

A Virtual Operating System

Dennis E. Hall, Deborah K. Scherrer, and Joseph S. Sventek

One complication you probably have no
control over is your local computing environ-
ment. But even if it’s horrible, as many are.
you don't have to suffer stoically. Even a
modest improvement of frequently used parts,
like your programming and job control lan-
guages, is well worthwhile. and there’s no
excuse for not trying to conceal the worst
aspeclts. ~

—Kernighan and Plauger. Software Tools

1. Introduction
Associated with each computer
system is a “local computing envi-

ronment” or operating system inter-
face. Today’s computer marketplace

Permission to copy without fee all or part
of this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear. and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise. or to
republish, requires a fee and/or specific per-
mission.

Key words and phrases: computing envi-
ronments, operating systems. virtual ma-
chines. system utilities. command languages.
functional equivalence of operating svstems,
user mobility, user interface, moving costs

CR Categories: 4.35, 4.40, 4.6

This work was supported by the Applied
Mathematical Sciences Program of the Office
of Energy Research. of the U.S. Department
of Energy under contract W-7405-ENG-48.

Reprints are available from the Lawrence
Berkeley Laboratory as LBL report 10677.

Author’s address: D.E. Hall. D.K. Scher-
rer. and J.S. Sventek. Lawrence Berkeley Lab-
oratory, University of California. Berkeley.
CA 94720.)
© 1980 ACM 0001-0782/80/0900-0495 75¢.

495

Lawrence Berkeley Laboratory

SUMMARY: Moving to a new system is costly and error-
prone. The problem can be reduced through use of a virtual
operating system that disentangles computing environments
from their underlying operating systems. The authors report
on their successful experience in doing this and achieving
inter-system uniformity at all three levels of user interface:
virtual machine, utilities, and command language.

offers a variety of such environ-
ments, each inextricably entwined
with its own peculiar set of hardware
components. Because of this, cus-
tomers acquiring a new system must
usually spend considerable time and
effort moving both software and peo-
ple to a new computing environ-
ment.

Under present conditions, even
estimating the organizational impact
of such a move can be extremely
difficult. As a rule, moving to a new
system is costly and error-prone.
Therefore. many organizations have
elected to stay with a single computer
vendor in spite of an increasing-
ly competitive hardware market-
place.

Although computer manufac-
turers have been effective in devel-
oping highly reliable operating sys-

Communications
of

the ACM

tems, their computing environments
are not usually examples of good
human engineering. Customers, in
an effort to minimize the cost of
moving to new systems, have insisted
that vendors remain compatible with
historical precedent. This tends to
discourage the removal of poor in-
terfaces and inhibits the develop-
ment of improved ones. As a result,
bad interfaces seem to live on for-
ever.

For many computer users there
is no need to distinguish between the
interface to an operating system and
the operating system itself. We will
show that under certain conditions a
uniform system interface can be pro-
vided across machine boundaries
without disturbing vendor software.
The method consists of creating a
virtual operating system.

September 80
Volume 23
Number 9

1

2. The Virtual Operating System
Approach

A real operating system presents
three principal interfaces to its users
[6]: the virtual machine or operating
system primitives accessible through
programming languages; the wtility
programs such as compilers, linkers,
and editors, and the command lan-
guage or means by which users ac-
cess system resources from a termi-
nal. Most system services are avail-
able through one or more of these
interfaces (see Figure 1).

The idea of a virtual operating
system is to provide standard ver-
sions of these interfaces, based on
organizational requirements. Possi-
ble applications include data man-
agement environments, office infor-
mation environments, real-time pro-
cess control environments, and pro-
gram development environments, to
‘name a few.

Once the three interfaces are
specified, implementation consists
of:

— choosing one or more program-
ming languages;

— developing run-time libraries or
extending the selected program-
ming languages to support the
chosen virtual machine on each
target S}’SlEIU:

— implementing the utilities and
command language in one or
more of the selected program-
ming languages, relying on the
virtual machine to interface to
the target operating systems;

— writing the necessary documen-
tation.

A virtual operating system be-
comes a real operating system when
the associated virtual machine cor-
responds to a physical machine.
However, the emphasis in building a
virtual operating system is on the
interface presented to the user. The
virtual machine is a highly idealized
set of primitive functions geared to
organizational programming re-
quirements. It bears almost no func-
tional resemblance to the underlying
hardware which actually performs
the work. In general, a virtual oper-
ating system is restricted to those

496

Command Interface
Utilities

Virtual
: Machine_

'Vendor
Supplied
System

Fig. 1. A virtual operating system provides standardized versions of the three outermost
system layers. Installation consists of interfacing the standardized virtual machine to the

vendor supplied system.

parts of an ordinary operating system
which an organization considers im-
portant in completing its work. Ob-
viously, a single real operating sys-
tem can support many virtual oper-
ating systems.

To achieve the full benefits of
this approach, the virtual machine
must be implementable without
changing the vendor software. This
implies a functional equivalence be-
tween the chosen virtual machine
and the target systems. A bootstrap-
ping design procedure is therefore
required. Every candidate virtual
machine function must be tested on
each target system before it can be
adopted.

The virtual operating system ap-
proach reduces the problem of mov-
ing to a new system to the (nontri-
vial) problem of implementing a vir-
tual machine. All utilities and user

Communications
of
the ACM

programs are completely portable
since their interface to any particular
operating system is through the vir-
tual machine. Similarly, higher level
procedures written for a portable
utility are themselves portable. For
example, a file containing editor
commands will work on any ma-
chine supporting the editor utility.
Finally, command language proce-
dures are also portable, since the
command language program is port-
able. The availability of the entire
virtual operating system (virtual ma-
chine, utilities, and command lan-
guage) makes it easy for users and
programs to move from one vendor
system to another.

We emphasize that this approach
reduces the cost of moving both peo-
ple and software to zero. The over-
head is the cost of implementing the
virtual machine on the candidate sys-

September 80
Volume 23
Number 9

COMPUTING
PRACTICES

tem. This can be estimated by any
knowledgeable system programmer
and is completely independent of the
number of people and the amount of
software to be moved.

3. When is a Virtual Operating
System Approach Desirable?

The advantages and disadvan-
tages of a virtual operating system
are much the same as those for a real
operating system. However, the ef-
fort to develop and maintain a vir-
tual operating system is usually far
less than that expended for a real
operating system: The most difficult
problem is specifying a virtual ma-
chine which can peacefully coexist
with the desired target systems.

In some respects, this approach
makes sense for any software devel-
opment project. The identification of
clear-cut interfaces is a standard
structured programming technique,
which (in theory at least) reduces
software maintenance costs. The
only controversy might be over the
particular choice of structure (i.e.,
the virtual machine). In general,
whenever organizational software is
likely to outlive its hardware, the
virtual operating system approach
warrants consideration. This is be-
cause of the high redevelopment
costs.

4. One Realization of a Virtual
Operating System

To test the approach, a uniform
program development environment
was installed on several distinct sys-
tems. A program development envi-
ronment consists of resources which
assist programmers in the develop-
ment and maintenance of computer
programs, such as text editors, pro-
gramming language processors. and
file systems. The types of system re-
sources with which such a virtual
machine is concerned (files, directo-
ries, processes, and the user environ-
ment) require a general-purpese op-
erating system interface.

497

Since the primary goal was to
achieve some practical results, the
system was to be modeled after an
existing real operating system. The
major criteria for the selection of this
real system were the popularity of it
within its user community and the
estimated relevance of it to the pro-
gramming needs within the organi-
zation. After an extensive survey of
existing systems, the Unix' operating
system [3] appeared to be a good
candidate for emulation.

The actual virtual machine im-
plementation permits the manipula-
tion of files, directories, processes,
and the user environment. The com-
plete list of primitives implemented
are given in Appendix A. Most of
the file manipulation primitives were
adopted from Kernighan and
Plauger’s Software Tools [8], since
these primitives already provided a
virtual machine consistent with a
subset of the Unix system. This vir-
tual machine could be used to imple-
ment most of the program develop-
ment environments currently avail-
able. In particular, it permitted the
implementation of many of the text
manipulation utilities of the Unix
system, as well as a command line
interpreter similar to the Unix shell
[4].

The primary requirements in the
selection of a programming language
for the virtual operating system were
that the resulting code be portable to
a wide range of machine architec-
tures and that there be a substantial
body of existing code upon which to
base the system. The language cho-
sen was RATFOR (rational Fortran)
[7], a Fortran preprocessor which in-
cludes a reasonable set of flow-con-
trol structures (if-else, while, for, and
repeat-until). This choice meets the
two requirements, since ANSI-66
Fortran [1] compilers are available
for use in most vendor environments
and since the source code for the
utilities in [8] is available in machine
readable form. (These were imple-
mentations of many of the Unix text-
processing utilities.) An extra plus
was that RATFOR represented a

! Unix is a tradewark of Bell Laborato-
ries.

Communications
of
the ACM

reasonable way to encourage struc-
tured programming, since Fortran
was already the predominant pro-
gramming language.

Although the implementation of
the utility programs was greatly
aided by the availability of the source
code [8], a fair amount of effort was
necessary to increase the appeal of
the system within a user community.
In particular, all of the original util-
ities were substantially enhanced,
and new ones were written as their
needs were perceived. To complete
the implementation of the virtual op-
erating system, the command line
interpreter was written, again emu-
lating that of Unix [4]. On-line doc-
umentation of the system was pro-
vided [5], and a guide for installing
the package on new systems was
written [9]. In all cases, the system
was offered in parallel with the ex-
isting environment, thereby allowing
users to experiment with the virtual
operating system without giving up
the familiar, vendor-supplied envi-
ronment. A complete list of the util-
ities in the system is presented In
Appendix B. A description of the
command interpreter is provided in
Appendix C.

To encourage experimentation
and alleviate user frustration. the
source code for the system was made
available to all interested parties. im-
plicitly designating the universe of
users as the system-programming
group. It was felt that the resulting
variation would complicate mainte-
nance initially, but that the eventual
benefits might outweigh the disad-
vantages.

5. Experience

5.1 Achieving Functional
Equivalence of Operating
Systems

The virtual operating system was
implemented on the systems listed in
Table 1. A virtual operating system
based upon a restricted set of the
primitives of Appendix A was imple-
mented on a much wider variety of
machine architectures, as shown in
Appendix D. The implementations
listed in Table I indicate that these

September 80

Volume 23
Number 9

Table L.
Vendor Machine Operating system Person-months
CcDC 6000 BKY 4
DEC 11/70 IAS 2
LC 11/780 VMS 1
DEC 11/34 RSX-11M 3
DEC PDP-10 TENEX 2
Modcomp IV MAX4 5

vendor-supplied operating systems
supply most of the system calls nec-
essary to implement this virtual ma-
chine.

Complete uniformity across the
different vendors may require mod-
ification of one or more of the host
operating systems. This usually in-
validates vendor-software mainte-
nance contracts. Fortunately, a
knowledgeable system programmer
can often solve the problem through
creative primitive implementation.
But regardless of the manner in
which the virtual machine is imple-
mented on existing machines. the
mappability of the virtual machine
may be used as a criterion for select-
ing prospective vendors.

The following is an example of
one apparent nonuniformity. Most
multiprogramming operating sys-
tems supply a central portion of the
executive which handles the com-
munication with user terminals (the
“terminal handler™). Certain keys on
the terminal keyboard have special
meaning to the terminal handler—
e.g.. erase previous character, inter-
rupt process, and suspend terminal
output. Even though there is a stan-
dard [2] for the interpretation of the
character codes generated by the ter-
minals. most systems apply their own
semantics to the nonprinting ones,
with the result that the keyboard in-
terfaces to different systems are ex-
tremely nonuniform. To complicate
the situation, these semantics are
usually not under the control of the
user. User mobility in this situation
is thus severely hindered.

One solution to this problem is to
modify the terminal handler for each
system to present a common key-
board interface on all systems, with
the side-effect of invalidating soft-

498

ware maintenance contracts. Fortu-
nately., most systems also provide the
capability of transmitting and receiv-
ing characters with no interpretation
by the terminal handler (“‘raw ter-
minal [/O”). If the virtual machine
I/0O primitives transfer raw I/0 to
and from terminals. then a common
set of semantics may be applied to
the character codes on all systems,
thus creating a uniform keyboard in-
terface. Systems which do not allow
user-applied semantics to the char-
acter codes or do not permit raw
terminal I/O can be avoided by or-
ganizations wishing to preserve this
common keyboard interface.

This is not the only example of
the difficulties encountered in such
an endeavor, but it is illustrative in
the sense that it indicates most prob-
lems can be solved without resorting
to modification of the vendor soft-
ware.

In conclusion., the functional
equivalence of vendor operating sys-
tems is strongly dependent upon the
virtual machine specified. In the case
of the machine outlined in Section 4,
the virtual operating system primi-
tives are implementable over a wide
range of machine architectures with-
out modification to the host operat-
ing system. A more general conclu-
sion is that if the virtual machine
specification accurately represents
the needs of a particular organiza-
tion. the implementability of the vir-
tual machine is the major criterion
in the selection of a new computer
system.

5.2 Estimating Costs

There are two types of costs in-
curred when using a virtual operat-
ing system approach:

Communications
of
the ACM

(1) The costs of writing the util-
ities: This is a one-time cost, since
these utilities are independent of any
real operating system. The program
development costs for the utilities
will be similar to those for any other
software system designed for a spe-
cific machine, since the virtual op-
erating system utilities are designed
for the virtual machine.

(2) The costs of implementing
the virtual machine: These are in-
curred once for each different host
operating system within the organi-
zation. It is important to note that
this is the only cost in moving all
personnel and software to the new
computing environment.

It has been estimated” that eight
to ten person-months of effort were
required to implement the original
utilities in [8]. In addition, six to eight
person-months were spent enhanc-
ing these original utilities. The larg-
est single investment in new code
was writing the command line inter-
preter, which required four person-
months. In all, approximately two
person-years have been invested in
the implementation of the utilities of
Appendix B.

The costs incurred in the imple-
mentation of the virtual machine on
several systems are given in Table L.
It is notable that the average time
necessary to port the entire system
was approximately four person-
months. The dominance of Digital
Equipment Corporation systems
should not be interpreted as a lack
of rigorous testing of the concept,
since the operating systems on these
machines are quite different.

In cases such as this, in which the
effort required to implement the vir-
tual machine is small, an initial at-
tempt at implementation can be
made as part of the evaluation of
new systems. The decision to pur-
chase can then be based upon
whether or not the virtual machine

* Brian Kernighan. private communica-
tion: *... Probably 8-10 person months. but
we were writing the book too. (That's 4-5
months for two people.)”

September 80
Volume 23
Number 9

L}

COMPUTING
PRACTICES

is implementable on the given sys-
tem. Movement of personnel and
software can be essentially instanta-
neous.

5.3 Optimizing Machine
Efficiency

The issue of machine efficiency
(the ability to minimize the demands
of the software upon scarce hardware
and software resources) is addressed
through the design and implemen-
tation of the virtual machine. The
virtual machine selected indicates
those resources which the utilities
can manipulate and outlines any
possible bottlenecks in the utilization
of those resources.

The utilities of the virtual oper-
ating system described here are pri-
marily oriented toward text process-
ing (source code generation, docu-
mentation, inter-user communica-
tion, etc.) These types of utilities are
characteristically bounded by input/
output rates [8]. Since the input/out-
put capabilities are isolated in the
virtual machine, the effect of this
particular problem can be reduced
through efficient implementation of
the I/O primitives.

The effect of the programming
language on efficiency should also
be studied. Snow [11] has reported
on the automatic translation of
RATFOR to BCPL [10], which re-
sulted in a substantial reduction in
memory requirements and enhanced
execution speeds. Preliminary inves-
tigations at the Lawrence Berkeley
Laboratory (LBL) have indicated
that a 50 percent reduction in object
code size and a 30 percent improve-
ment in CPU utilization are attaina-
ble on a VAX-11/780 running the
VMS operating system by automati-
cally translating RATFOR to BLISS
[12]. Table II summarizes code size
and execution time for various lan-
guage translation alternatives. The
example is “scopy,” a frequently
used string copy routine.

499

As a rule, it is necessary to antic-
ipate bottlenecks in resource utiliza-
tion during the design phase of the
virtual machine. If manipulation of
these resources is restricted to the
virtual machine, efficiency can be
achieved through optimization of the
primitives alone. All utilities access-
ing these resources receive the bene-
fits of such optimization automati-
cally.

5.4 Proliferation of Variants

When a collection of diverse sys-
tems share a common user interface,
a uniform environment is said to ex-
ist. It is this uniform environment
which makes the virtual operating
system approach appealing. The ex-
istence of variants destroys this uni-
formity. The distribution of source
code to users invites the proliferation

of variants. The traditional method

of controlling this is to restrict devel-
opment to a small group of experts.
However. this method tends to pro-
duce user frustration and inhibit sys-
tem growth, often resulting in medi-
ocrity.

Although such variants are both-
ersome and undesirable, they are
necessary for growth, and are anal-
ogous, say, to genetic variations in a
biological population. As conditions
change. software that can be adapted
to changing requirements will sur-
vive. The abstract virtual machine
and high-level language used in a
virtual operating system enable the
software to be adapted to changing
conditions.

When software is used by many
organizations, a user group may per-
form the control functions necessary
to limit variation. To test this partic-
ular scenario, a user group was or-
ganized. Current activities of the
group include the establishment of a
centralized distribution facility, dis-
tribution of a newsletter, organiza-

tion of active special interest groups
on various topics, and sponsorship of
biannual meetings. Standards for the
various utilities are expected to result
from such activities. In this manner,
a benign form of control over the
variation of the code is exercised.

6. Conclusions

Significant progress toward
disentangling computing environ-
ments from their underlying operat-
ing system has been made. Using the
virtual operating system approach,
uniformity can be achieved at the
three principal levels of user inter-
face—the virtual machine, the sys-
tem utilities, and the command lan-
guage.

For at least one realization of the
virtual machine interface, the func-
tional equivalence of vendor operat-
ing systems has been established.
Complete uniformity of environment
is achievable without disturbing ven-
dor software.

Although the effort to install a
virtual operating system is large
when compared to the effort re-
quired when moving a single pro-
gram, it is small when compared to
the cost of moving an organization’s
software. Moreover, when personnel
retraining costs are considered. in-
stallation costs are insignificant. The
approach permits accurate estima-
tion of the cost of moving to a new
system. The cost of moving people is
zero, and the cost of software is equal
to the cost of implementing the vir-
tual machine.

The question of machine effi-
ciency can also be addressed. By an-
ticipating bottlenecks in resource uti-
lization, gritical functions can be iso-
lated and solutions incorporated in
the architecture of the virtual ma-
chine. This permits the benefits to be
shared by all software.

The proliferation of variants

Table 11

Code size Speed
Hand-coded assembly language 1.0 1.0
BLISS—simulated automatic translation 1.0 4.6
Fortran—hand-coded 3.0 4.6
RATFOR 3.0 6.0

Communications
of
the ACM

September 80
Volume 23
Number 9

brought on by wide distribution of
source code does not appear to be a
serious problem. It has been our ex-
perience that the formation of a user
group helps standardize both utilities
and the virtual machine.

Acknowledgments

The authors gratefully acknowl-
edge the cooperation of B. Ker-
nighan of Bell Labs, the Addison-
Wesley Publishing Company, and
the many individuals who imple-
mented the package on other sys-
tems. A project of this magnitude
necessarily involves many persons

from numerous sites. The following

provided especially helpful sugges-
tions and comments: D. Austin, M.
Bronson, and B. Upshaw of LBL, B.
Calland of NOSC, D. Comer of Pur-
due, P. Enslow of Georgia Tech., D.
Hanson of the University of Arizona,
T. Layman of IAC, D. Martin of
Hughes Aircraft. R. Munn of the
University of Maryland, C. Petersen
of ORINCON, and J. Pool of DOE
Headquarters.

References

1. American National Standard FORTRAN.
ANS X3.9-1966, Amer. Nat. Standards Inst..
N.Y.. 1966. Contains the official description
of the programming language Fortran 66.

2. American Standard Code for Information
Interchange. ANS X3.4-1977. Amer. NaL
Standards Inst. N.Y.. 1977. Contains the of-
ficial description of the data alphabet called
ASCIL

3. The Bell Syst. Tech. J. 57, 6 (July-August
1978). Perhaps the best single source of Unix
literature. The entire issue is devoted to the
Unix time-sharing operating system.

4. Bourne S.R. The Unix shell. The Bell Svst.
Tech. J. 57, 6 (July-August 1978), 1971-1990.
Describes the official Unix command lan-
guage.

5. Hall, D., Scherrer, D., and Sventek. J. The
software tools programmers manual. Internal
Rep. LBID 097, LBL. University of Calif,
Berkeley, Calif., 1978. A manual for the pro-
gram development environment described in
this report. Describes the virtual machine. the
utilities, and the command language in detail.

6. Brinch Hansen, P. Operating Svstem Prin-
ciples. Prentice-Hall. Englewood Cliffs, N.J.,
1973. Designed for readers with a background
in programming and a knowledge of elemen-
tary calculus and probability theory. focuses
on general concepts illustrated with algo-
rithms, techniques. and performance figures
from actual systems.

7. Kernighan, B.W. RATFOR—a prepro-

cessor for a rational FORTRAN. Software—
Practice and Experience 5. 4 Qct.-Dec. (1975).

395-406. Discusses design criteria for a For-
tran preprocessor, the RATFOR language and
its implementation. and user experience.

8. Kernighan. B., and Plauger, P. Software
Tools. Addison-Wesley Pub. Co.. ISBN O-
201-03669-X, Reading. Mass.. 1976. Presents
the principles of good programming practice
in the context of actual working programs.
The code is available in machine-readable
form as a supplement to the text.

9. Scherrer. D. COOKBOOK, instructions
for implementing the LBL software tools
package. Internal Rep. LBID 098. LBL. Uni-
versity of Calif.. Berkeley, Calif.. 1978. Pro-
vides guidelines for installing the software
tools program development environment on
new systems.

10. Richards, M. The portability of the BCPL
compiler. Software— Practice and Experience
1. 2 (April-June 1971), 135-146. Describes a
method for porting a BCPL compiler which
includes the specification of OCODE, a lan-
guage used as an interface between the ma-
chine-independent and machine-dependent
parts of the compiler.

11. Snow, C.R. The software tools project.
Software— Practice and Experience 8, 5 Sept.~
Oct. (1978). 585-599. Describes an implemen-
tation project on a Burroughs B1700 computer
using an automatic code translation tech-
nigue.

12. Wulf, W.A.. Russell, D.B., and Haber-
mann. A.N. BLISS: A language for systems
programming. Comm. ACM 1[4, 12 (Dec.
1971). 780-790. Describes BLISS. a language
designed to be especially suitable for use in
writing production software systems for DEC
machines.

Appendix A. Virtual Machine Primitives

The following summarizes the primitive functions of the virtual
machine chosen 1o test the virtual operating system technique.

File Access

Miscellaneous

get command line arguments

delete command line argument “n"

initialize all standard 1/0 and common blocks
close all open files and términate program

get current date and time

get name of current user and home directory

Many of the following were defined as primitives in the original
Kernighan-Plauger package. However. since it is possible to implement
these in terms of previously defined primitives, or. in one case. to
adjust the RATFOR preprocessor to handle the problem. it was
decided to move these functions to the portable category. Nevertheless.
optimization is usually advisable for increased efficiency or capability.

open open a file for reading, writing, or both getarg

create create a new file (or overwrite an existing one) delarg

close close (detach) a file initrd

remove remove a file from the file system endrd4

tty determine if file is a teletype/CRT device date

getyp determine if file is character or binary mailid
1/0 Quasi Primitives

getch read character from file

putch write character to file

seek move read/write pointer

markl| pick up position in file

readf read “n” bytes from file

writef write “n” bytes to file

flush force flushing of 1/0 buffer

Process Control

spawn execute subtask

pstat determine status of process

kill kill process

resume resume process after a suspend
suspnd suspend process

Directory Manipulation

prompt
getlin
putlin
remark
scratf
amove

putlin with carriage return/line-feed suppressed
read next line from file

write a line to file

print single-line message

generate unique (scratch) file name

move (rename) filel to file2

Appendix B. Utilities

The following summarizes the utility functions which constitute
one portion of the program development environment. These emulate
many of the utilities found in the Unix operating system.

opendr open directory for reading

closdr close directory

gdrprm get next file name from directory

gdraux get auxiliary file information from directory

mkpath generate full Unix pathname from local file name ar

mklocl generate local file specification from pathname cat

cwdir change current directory cent

gwdir get current working directory name ch

mkdir create a directory cmp

rmdir delete a directory comm

mvdir move (rename) directory cpress
500 Communications

of
the ACM

archive file maintainer
concatenate and print text files
character count

make changes in text files
compars v flas

print lines common to two files
compress input files

September 80
Volume 23
Number 9

f

- COMPUTING
PRACTICES

crt copy files to terminal

crypt crypt and decrypt standard input
cwd change working directory

date print date and time

detab convert labs to spaces

echo print command line arguments
ed text editor

entab convert spaces to tabs and spaces
expand uncompress input files

find search a file for a pattern

form generate form letter

help list on-line documentation

incl expand included files

kill kill process

kwic make key word in context index
lent line count

Is list contents of directory

macro process macro definitions

mail send or receive mail

man run off section of user’s manual
mkdir create a directory

mv move (rename) a file

mvdir move (rename) a directory

0s {overstrike) convert backspaces into multiple lines
postmn see if user has mail

pstat check process status

pwd print working directory

ratd RATFOR preprocessor

resolve idenufy mail users
resume resume suspended process

rm remove files

roff format text

rmdir remove directory

sh shell (command line interpreter)

sort sort and/or merge text files

spell find spelling errors

split split a file into pieces

suspnd suspend running process

lee copy input to standard output and named files
tr character transliteration

uniq strip adjacent repeated lines from a file
unrot unrotate lines rotated by kwic

went (character) word count

Appendix C. Command Language
The shell is a command interpreter: It provides a user interface to
the process-related facilities of the virtual operating system. It executes
commands that are read either from a terminal or from a file.

Commands

Simple commands are written as sequences of “words™ separated
by blanks. The first word is the name of the command to be executed.
and any remaining words are passed as arguments to the invoked
command. The command name actually specifies a file which should
be brought into memory and executed. If the file cannot be found in
the current directory (or through its pathname), the shell searches one
or more specific directories of commands intended to be available to
shell users in general.

Standard 1/0

The utilities of the virtual operating system have three standard
files associated with them: standard input. standard output. and stan-
dard error output. All three are initially assigned to the user’s terminal.
but may be redirected to a disk file for the duration of the command
by preceding the file name argument with special characters:
“<name" causes the file “name” to be used as the standard input file
of the associated command.
“>name” causes file “name” to be used as the standard output
(*=>name"” appends it to the end of the file).

501 Communications
of

““'name” causes the file “name" to be used as the standard error output
(*??name” appends the error message to the end of the file).

Most utilities also can read their input from a series of files simply
by having the files listed as arguments to the command.

Filters and Pipes

The output from one command may be directed to the input of
another. A sequence of commands separated by vertical bars (]) or
carets (“*/\") causes the shell to arrange delivery of the standard output
of each command to the standard input of the next command. in
sequence. For example, the command line:

tr <name A-Z a-z|sort [uniq

translates all the upper case characters in file “name” to lower case.
sorts them. and then strips out multiple occurrences of lines.

The vertical bar is called a “pipe.” Programs such as tr, sort, and.
uniq, which copy standard input to standard output (making some
changes along the way), are called filters.

Command Separators and Groupings

Commands need not be on different lines; they may be separated
by semicolons.

The shell also allows commands to be grouped together by using
parentheses so the group can then be used as a filter. For example,

(find <filel this; find <file2 that) | sort

locates all lines containing “this™ in filel, plus all lines containing
“that™ in file2, and sorts them together.

Multitasking

On many systems the shell also allows processes to be executed in
the background. That is, the shell will not wait for the command to
finish executing before prompting again. Any command may be run in
background by following it with the operator “&".

Script Files

The shell may be used to read and execute commands contained
in a file. Such a file is called a “script file.” It can be used wherever a
regular command can be issued. Arguments supplied with the call are
referenced within the shell procedure by using the positional param-
eters $1. 82, etc.

Script files sometimes require in-line data to be available. A special
input redirection notation “<" is used to achieve this. For example.
the editor normally takes its commands from the standard input.
However. within a script file commands could be embedded as:

ed file =!
s .editing requests

The lines between <<! and ! are called a “*here”™ document: they are
read by the shell and made available as the standard input. The
character 1" is arbitrary: the document is terminated by using a line
which consists of the character that followed the <.

Shell Flags

The shell accepts several special arguments when it is invoked.
causing it to print each line of a script file as it is read and/or executed.
or to suppress execution of the command entirely. or to read the
remaining arguments and execute them as a shell command.

Appendix D. Machines and Systems
The following summarizes the machines and systems used by
members of the software tools user group. Most support at least the
RATFOR preprocessor and the [/O primitives.

Burroughs B1700 local

CDC 1784 local

CDC 6000s, Cybers KRONOS, UT-2D. local. DUAL-MACE,
SCOPE3, NOS

CDC 7600 LTSS, SCOPE II. local
CDC MP-32 MPX/0S
Cray CPSS

DataGeneral Eclipse AOS. RDOS
(C & S series)

DataGeneral Nova RDOS

DataGeneral MP-100 MP/OS

ROLM 1602 RDOS
GEC 4070 0S 4000
Honeywell 600038 GCOS-3
Honeywell Level 6 MOD 6 OS
Multics Mulucs

September 80
Volume 23

502

ACOS 700
AN/UYK-20
HP 1000. 3000
HP 2IMX

IBM S/360. S/370,

303x
IBM 1130

FACOM M-200. M-

190
HITAC 8700, 8300
MI70
Intel 8080
Intel 8086
Interdata 70
Interdata 8/32
Modcomp

GCOS

Level 2

RTE-1VB, MPE-III

RTE III, RTE IV

OS/MVT, VM/CMS, MVYS, TSO, Wilbur

DM2
OS IV/F4

087

VOS3

IS1S

UCSD Pascal
DOS
OS/32MT
MAX

Communications
of
the ACM

PDP 10
PDP lls

PDP 15

PDP 20

VAX

LSI 11

Prime

SEL 32/77

SIEMANS 4004

TELEFUNKEN
TR440

Univac 1100

Univac 90/70

Xerox Sigma

Zilog 280

TOPSI10, TYMCOM-X, TENEX

RSX-11M, RSX-11S, RSX-11D. IAS. RT-
11, RSTS, Unix, DOS, S

XVM/RSX

TOPS20

VMS

UCSD Pascal, RT-11, DOS-2

PRIMOS

MPX

TST

BS19

EXEC 8
VS/9

RBM., CP-V
CP/M. Oasis

September 80
Yolume 23
Number 9

