Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 6, July-August 1978
Printed in U. S. A.

UNIX Time-Sharing System:

The Network Operations Center System

By H. COHEN and J. C. KAUFELD, Jr.
(Manuscript received January 27, 1978)

The Network Operations Center System (NOCS) is a real-time,
multiprogrammed system whose function is to survey and monitor the
entire toll network. While performing this function, the NOCS supports
multiple time-shared user work stations used to interrogate the data base
maintained by the real-time data acquisition portion of the system. The
UNIX* operating system was chosen to support the NOCS because it could
directly support the time-shared user work stations and could, with the
addition of some interprocess communication enhancements and a fast
access file system, support the real-time data acquisition. Features of the
UNIX operating system critical to data acquisition include signals, sema-
phores, interprocess messages, and raw I/0. Two features were added,
the Logical File System (LFs), which implements fast application process
access to disk files, and the Multiply Accessible User Space (MAUS),
which allows application processes to share the same memory areas.
This paper describes these features, with emphasis on the manner in
which UNIX operating system features are used to support simultaneously
both real-time and time-shared processing and on the ease with which
Sfeatures were added to the UNIX operating system.

I. INTRODUCTION
This paper explains how the Network Operations Center System

* UNIX is a trademark of Bell Laboratories.

2289

(Nocs) makes use of the UNIX* operating system to perform its
functions. Thus, while some explanations of the NOCS and its
processes are given, the primary intent of the NOCS explanations is
to motivate the discussion of UNIX operating system features and
modifications.

The paper is organized into three sections. The first deals with
the NOCS, giving a simplified overview of the system and an analysis
of the critical functions and the features needed in an operating sys-
tem to implement those functions. The second section details a few
of the features added to the standard UNIX operating system and the
functions these features are intended to fulfill. The third section
discusses the advantages which the UNIX environment offered to the
NOCS project during development.

Il. NOCS DESCRIPTION
2.1 Overview

2.1.1 Network management

Network management of the telephone system concerns itself
with maximizing telephone network utilization. It is performed in a
hierarchy of levels with responsibilities divided among local,
regional,t and North American network management centers. At
all levels, network managers continuously monitor the volume of
telephone traffic being placed on trunk groups and offices within
their respective spheres of responsibility. Whenever the volume
begins to exceed the design capacity of their own portion of the net-
work, network managers attempt to find out-of-chain alternate
routes through other portions of the network for that telephone
traffic. If no alternate route can be found, or if insufficient capacity
is available in the network to handle the traffic presented, network
managers have the option to cancel a portion of the load via code
blocks and other traffic-reducing controls, since network call-
completing efficiency decreases when overloaded. To perform these
functions, network managers require large amounts of up-to-the-
minute traffic data that have been analyzed, summarized, and
displayed in a concise, filtered manner.

* UNIX is a trademark of Bell Laboratories.
t The telephone switching network is partitioned into 12 segments known as switch-
ing regions.

2290 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

2.1.2 NOCS role

Network managers at the Network Operations Center operated by
AT&T Long Lines in Bedminster, New Jersey have overall responsi-
bility for the entire North American toll telephone network. These
responsibilities include:

(i) Monitoring the status of all major toll-switching machines and
their interconnecting trunk groups.

(ii) Coordinating the efforts of other network management
centers in charge of smaller geographic portions of the net-
work.

(iii) Detecting interregional trunking problems and recommending
reroute control solutions to the other network management
centers.

(iv) Distributing network performance and status information to
appropriate telephone company management personnel.

The Nocs provides the network managers with many tools to aid
them in fulfilling these responsibilities and relieves them of much of
the data uncertainty and manual effort previously associated with
their jobs. Application processes in the NOCS collect data, maintain
a visual display of network status, analyze data looking for network
problems, suggest possible control actions, and provide the ability to
make a wide variety of complex data inquiries about the network.
These processes drive a wall display* that gives a visual overview of
the state of the network, printers that report details of network
activity, and 10 or more cathode ray tube (CRT) terminals that are
used to examine problems in detail, to update the data base, and to
administer the system.

2.1.3 Data network

The data transfer point (DTP)t is at the hub of a star-configured
computer network that has EADAS/Network Management (E/NM)%

* The wall display contains approximately 8000 binary state indicators and is about 3
meters tall by 20 meters long.

t The pTP, which utilizes a Digital Equipment Corporation ppp 11/70 minicomputer,
is a UNIX-operating-system-based system designed to broadcast network management
data among all E/NM systems and the Nocs according to routing information contained
in the data messages.

t The Engineering and Administrative Data Acquisition System/Network Manage-
ment system (E/NM) is another Digital Equipment Corporation ppp-11/70 minicom-
puter system running under the UNIX operating system. It is designed to monitor and
control both local and toll traffic in a geographical subset of the telephone network —

NETWORK OPERATIONS CENTER 2201

E/NM
L ey N NOCS DISPLAYS
S ’— ————————— 1
1
\\\ : i
WALLBOAR |
E/NM AN I O
2 cPU '-___\ \\ | |
~o \ | |
~~e \\ | |
~D. 1 |
~ DTP NOCS 4
=y e T b PRINTERS |
3 ENM | e =——"" CPU CPU | |
cPU Ve | |
’/ | I
|
. e | I
. / 1 CRT |
s | TERMINALS |
7’ i |
/
7 Lo __ il
Nt | EMNM L

cPU

*N IS EXPECTED TO BE AROUND 30
Fig. | —Network management data network.

systems and the NOCS as the nodes (see Fig. 1). The Nocs, which
executes on a Digital Equipment Corporation PDP-11/70 minicom-
puter system, is physically co-located with the DTP. This network is
synchronized in time to utilize telephone traffic data accumulated
periodically (every 5 minutes) by data collection systems. When an
E/NM detects a problem or control on a trunk group or office of
potential concern to the NOCS, the data describing that problem or
control are sent to the DTP which passes them on to the NOCS. In
addition, this network is used to pass reference data describing the
telephone network configuration to the NOCS.

2.1.4 NOCS data

During the first 150 seconds or so of each 5-minute interval, the
NOCS can receive as many as 6000 dynamic data messages, i.e., data
describing the current state of the network, through the link con-
necting the Nocs and DTP computers. About 2000 of these mes-
sages concern the trunk status data needed continuously by the
NOCS in order to find spare capacity for alternate routes. Most of
the rest are trunk group or office data messages which occur only
when a trunk group or office is overloaded beyond its design capa-
city. Each message contains identity information and several pro-
cessed traffic data fields, which are retained for several intervals in
files in the NOCS data base. Dynamic data messages which give
trunk group control, code block control, and office alarm status are

such as a large metropolitan area, a state, telephone operating company, or switching
region. It is expected that 30 or more E/NMs will blanket the U.S. telephone network
by the early 1980s.

2292 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

received asynchronously in time by the NOCS, and are retained in
the NOCS data base until a change in state occurs.

The telephone network configuration of interest to the NOCS is
specified by reference data describing approximately 300 toll switch-
ing offices and up to 25,000 of their interconnecting trunk groups.
All the trunk group reference data needed by the NOCS are derived
algorithmically from the reference data base of the E/NMs and are
transmitted to the NoOcCS via the DTP. Hence, reference data mes-
sages that contain updates to the network configuration are received
at irregular intervals from E/NM systems.

2.1.5 NOCS data base

The Nocs data are arranged into a data base consisting of several
hundred data files containing all the reference data necessary to
describe the network configuration and the dynamic data needed to
reflect the current state of the network. Some of the files are
record-oriented, describing all the information about individual data
base entities such as an office or trunk group. Others are relational
in nature, containing sets of related information such as all the
trunk groups between geographic areas or all the trunk groups with
the same type of problem condition. This arrangement allows com-
plex data inquiries to be answered quickly by combining relations
with a standard set of operations. It also allows per-entity data to be
accessed very quickly by a simple indexing operation into a file.

2.2 NOCS design

2.2.1 Philosophy

The UNIX operating system was selected as the basis for design to
take advantage of prior experience with that system. During the
design phase, every attempt was made to use existing UNIX operating
system features to implement the required NOCS functions and to
minimize the number of modifications necessary to the UNIX operat-
ing system. As a result of this philosophy, the final set of features
needed in the operating system by the NOCS included only two
features not in the standard UNIX system. If the UNIX operating sys-
tem modifications had turned out to be too extensive to be imple-
mented locally, another operating system would have been investi-
gated.

NETWORK OPERATIONS CENTER 2293

DATA MESSAGES FROM E/NMs VIA DTP

Y / WALLBOARD
MPS
. . -
dy :\- PRINTERS
~

T
| ~) o
LY N o - immediate notifications
| -
| h N
RDUS)‘ _—— RAS RAS/CRTS
'y
Iy
[r/
I DIS > DIS/CRTS
|
i |
r—"
—
DAS SUBROUTINES =——— maus :

| Ve

|'_ |

| /

LFS Iw-—__ (PART OF UNIX SYSTEM) /
L 4

Fig. 2—Major Nocs subsystems.

2.2.2 NOCS subsystems

The application software for the NOCS is organized along the lines
of functional requirements into the major subsystems listed below
(for graphic representation, see Fig. 2). Each of these subsystems
consists of one or more UNIX processes.

(i) The Message Processing Subsystem (MPS) receives all incom-
ing data from the DTP. Some incoming data from the DTP are
reference data messages which are not handled in real-time.
These reference data messages are passed to the Reference
Data Update System (RDUS), a background process that main-
tains the NOCS reference data base. The remainder, dynamic
data messages, are handled by the MPS and are entered into
the NOCS data base. If an “immediate notification” request
has been made for a data item by some other NOCS subsys-
tem, an interprocess message containing that data item is sent
to that subsystem. When all the dynamic data for an interval
have been received, the MPS notifies all interested subsystems
of the availability of new data, updates the data indirection
pointers to make the new data available, updates the wall
display to indicate the latest network problems, and begins
printing the latest data reports.

2294 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

(i)

(iii)

(iv)

(v)

The Reroute Assist Subsystem (RAS) analyzes new data each
5-minute interval to determine if there are any interregional
final trunking problems in the network that are possible candi-
dates for traffic reroutes. If any are found, RAS looks through
the available trunk data to determine if spare capacity exists to
relieve the problem. Any problems and suggested solutions
are displayed to the network managers through CRT terminals.
The RAS also requests the MPS to notify it immediately if any
further data are received relating to an implemented reroute.
If such notification is received, the RAS immediately examines
the data given it by the MPS to determine if any changes
should be made to that reroute.

The Data Inquiry Subsystem (DIS) provides the network
managers with access to the NOCS data base from CRT work
stations. From any of these work stations, a manager can
display network data in a variety of ways. Each way presents
the data from a unique perspective in a rigorously formatted
and easily interpreted manner. In addition, CRT data entry
displays are also used in maintaining the nontrunking portions
of the reference data base.

The Reference Data Update Subsystem (RDUS) processes all
changes relating to the configuration of the network. Inputs
to this system can come from the E/NMs via the MPS via the
DTP, CRT displays or as bulk input through the UNIX file sys-
tem. It uses these inputs to create and maintain the reference
data base needed by the MPS, RAS, and DIS to effectively inter-
pret, analyze, and display the dynamic data.

The Data Access Subsystemn (DAS) handles all requests for
information from the NOCS data base. The DAS consists of a
large set of subroutines that provide access to the NOCS
dynamic and reference data files. Hence, in the UNIX sense,
DAS is not a process but a set of routines loaded with each
UNIX process that accesses the NOCS data base. Because mul-
tiple processes simultaneously need quick access to the same
files for both reading and writing, the DAS maintains a large
area of common data and synchronization flags, which is
shared by all NOCS processes using the DAS.

2.2.3 Operating System Problem Analysis

2.2.3.1 File system requirements. The initial processing of data

NETWORK OPERATIONS CENTER 2295

messages by the MPS involves a trunk group identity translation, a
possible wallboard indicator translation and storage of the data items
contained in the message. A simple analysis of the relationship
among message content, the expected message volume, and the data
display requirements reveals that the NOCS must be able to do at
least 12,000 translations on the set of incoming data messages and
place them into the correct disk files in an elapsed time of about 150
seconds. Potentially, then, a very large number of disk accesses are
possible unless careful attention is given to the algorithms and data
layouts used. Thus, a data storage mechanism is required with as
little overhead as possible from the point of view of system
buffering, physical disk address calculation, and disk head position-
ing. This simple analysis does not take into account the substantial
number of disk accesses necessitated by DIS, RAS, and other NOCS
background processes.

In addition, analysis of data inquiry displays reveals that some DIS
processes would need simultaneous access to more data files than
the UNIX file system allows a process to have at one time. There-
fore, in order to hold response times down, some mechanism for
overcoming this limitation without numerous time-consuming open-
ing and closing of files is necessary.

2.2.3.2 Scheduling requirements. The application processes in the
NOCS impose three types of scheduling criteria on the UNIX operating
system. First, the MPS and RAS are required to analyze the incoming
data in “near” real-time to provide network managers with timely
notification of potential problems and recommended solutions.
Since the MPS is responsible for collecting and processing incoming
data, it must execute with enough frequency and for long enough
periods to prevent data overruns and/or delays. Second, the CRT
work stations, at which network managers interact with the DIS,
have classical time-share scheduling needs. Third, background pro-
grams, exemplified by the processing of reference data messages by
RDUS, require neither real-time nor time-share scheduling.
Processes of this third type can be scheduled to run whenever no
processes of the real-time or time-share variety are waiting to run.

2.2.3.3 Interprocess communication requirements. Several types
of interprocess communications mechanisms are needed by NOCS
subsystems. First, the MPS must send interprocess messages to
other NOCS processes upon reception of “immediate notification”
requested data. These data must be passed quickly but are not large
in volume. The use of an interprocess message facility implies that
the process identifications (process IDs) assigned by the UNIX

2206 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

operating system®™ be communicated among processes. Another
mechanism mentioned in the MPS description was the need to be
able to notify other processes of the availability of new data. This
mechanism must be able to interrupt the actions of the target pro-
cess so that any necessary processing can occur before resuming the
interrupted activity. Last, it was also foreseen that the implementa-
tion of the DAS would require multiple processes to share their
knowledge of the state of files in the data base and would require a
mechanism for synchronization and protection of these files.

2.2.4 Operating system problem solutions

2.2.4.1 File system. The file system requirements led to the con-
clusion that the standard UNIX file system was inadequate for the
NocS. However, the raw I/0 facility in the UNIX operating system
has the following features:

(i) Control of data block placement within the raw I/0 area.
(i) Transfer of data directly from disk to user buffer.
(iiif) Access to a large contiguous disk area through a single UNIX
file.

These features provide precisely the capabilities required by the
NOCS in a file system. Hence, they were used as the foundation for
a new type of file system, known as the Logical File System (LFS),
which was added to the UNIX system.

The LFS controls logical file to physical disk address mapping and
the allocation of space on the disk. The LFS can be requested by the
user to read or write 512-byte sectors of a file, create or delete a file,
or copy one file to another. It keeps all files contiguous to simplify
logical to physical address mapping and minimize disk head move-
ment. Also, it transfers data directly from disk to user buffer areas.

The entire NOCS data base is implemented using the LFS. Since all
access to data from NOCS processes is through DAS subroutines, the
DAS has total semantic responsibilities for the contents of the files
which are in the LFS. The DAS remembers what NOCS data are in
which file, the size of the file in bytes, and the current usage status
of the file.

2.2.4.2 Scheduling. The NoOCS scheduling requirements are such
that the standard UNIX facilities can handle them. All real-time

* The process identification is the only way of uniquely identifying a job once it has
been started by the UNIX system. The message mechanism uses process
identifications as its addressing mechanism.

NETWORK OPERATIONS CENTER 2297

processes are given a base priority that is higher than any time-share
process. Thus, in the case of competition for the processor, the
real-time processes will be scheduled first. Within the real-time
priority range, the MPS is given the highest priority to ensure that it
will always be able to process the incoming data. Within the
time-share priority range, the CRT work stations assigned to reroute
assist interaction are given the highest priority. Finally, background
processes, like RDUS, are given lower priority than any time-share
process to ensure that background processes will only be run if no
other work needs to be performed.

2.2.4.3 Interprocess communications. The final design for the
NOCS system relies on the following interprocess communication
mechanisms:

(/) A mechanism for communicating process identifications.

(ii) An interprocess message facility for passing small amounts of
data between unrelated processes.

(iii) An interrupt mechanism for interprocess notifications of
events.

(iv) A synchronization/resource protection mechanism.

(v) A mechanism for sharing large amounts of data between
processes.

Given the existence of item (i), the UNIX interprocess message
facility can handle item (i) and the UNIX signal facility can handle
item (ii). However, items (), (i), and (v) required additions to
the UNIX system. Item (i), the synchronization/protection mechan-
ism, was solved by expanding the semaphore capability of the UNIX
system. Semaphores existed in the UNIX system, but processes were
restricted to five semaphores, and about 400 were needed by the
DAS simultaneously to effectively use the LFS capability. One way in
which item (v), sharing of data, could be handled by the standard
UNIX system would be to establish a file (either in LFS or the UNIX
file system) whose contents were read by each process when neces-
sary. In addition, a series of semaphores would have to be estab-
lished so that processes could have exclusive access to this file for
the purpose of changing it. A system for data sharing of that design
would have many problems in terms of simplicity, synchronization,
and speed, so it was decided to make a major addition to the UNIX
operating system known as MAUS, or Multiply Accessible User
Space. MAUS allows processes to directly share large portions of
their data space. MAUS also provides a solution for item (/).

2298 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

2.2.4.4 Other. A variety of other problems were encountered,
most of which were solved without any modifications of the UNIX
operating system. However, the following other additions were
made to the operating system:

(/) A pall UNIBUS link driver for high-speed interprocessor com-
munications. This is used for the DTP-to-NOCS communica-
tions link.

(i) A DHI11 asynchronous line multiplexer driver for half-duplex
DATASPEED® 40 terminals.

(i) Disk I/O priorities so that the priority of a disk request
matches the priority of the process needing the disk.

All the above modifications were necessary, but considered
sufficiently straightforward to need no further explanation.

I1l. UNIX FEATURE ADDITIONS

The Logical File System and the Multiply Accessible User Space
features were implemented for the NocS. These features are now
available and being used by other UNIX-system-based application sys-
tems needing real-time operating system features.

3.1 LFS (Logical File System)

The LFS is a mechanism that enables processes to use the raw 1/0
facility in the UNIX operating system without having to manage the
disk space within the disk area reserved for raw I/0. It establishes a
file system oriented around 512-byte blocks within which it can
create, write, read, and delete files.

3.1.1 Overview

The file system which the LFS provides sacrifices a number of
features of the standard UNIX file system for simplicity of implemen-
tation. For instance, the standard UNIX file system provides access
protection at the individual file level; in the LFS, access protection is
only provided once for the set of files managed by the LFS. Another
difference is that file names in the standard UNIX file system are
character strings which can be descriptive of file contents; in the
LFs, file names are numbers.

The important features of the LFS are listed below.

NETWORK OPERATIONS CENTER 2299

(i) Treatment of the LFS as a single UNIX file which, when
opened, allows access to all LFS files.

(i) File names that are indices into an array which lists the start-
ing block and size of each file, thereby minimizing the time
required to “look up” the physical mapping of a file.

(iif) Contiguous space allocation for all files, thereby minimizing
the time required to copy file data into memory.

(iv) Integrated file positioning with read or write, thereby eliminat-
ing separate file positioning system calls which are necessary
for accessing normal UNIX files.

(v) Adherence to the UNIX principle of isolating the application
processes from the vagaries of the physical device — with the
restriction that any physical device used for the LFS must
appear to have 512 bytes per block.

In order to access the files managed by the LFS, the unique UNIX
file name associated with the LFS must be opened using the special
routine Ifopen. The routines Ifcreate, Ifwrite, Ifread, and lfdelete
then can be used by processes to create, write, read, and delete files
within the LFS. Each of these routines expects the LFS file number
as an argument. In addition, Ifcreate expects to be passed the size
of the file being created; Ifwrite and Ifread expect a data buffer
address, data buffer size, and starting position in the file.

The LFs has one additional feature which the NOCS software uses.
The Ifswitch routine takes two LFS file numbers as arguments and
switches the physical storage pointers for the files. This feature
enables files to be built in an offline storage area and then be quickly
switched online; it is especially useful during data base updates.

3.1.2 Implementation

A restriction existed in the UNIX operating system which had to be
eliminated before the LFS could be effective. The interface between
the LFs and the disk is through the raw I/0 routine, physio. phy-
8io, in the standard UNIX operating system, allows only one raw I/0
request to be queued for each device; since almost all NOCS
processes make raw I/O requests via the LFS, this restriction would
have resulted in a severe bottleneck. The remedy was to allow phy-
sio to queue raw I/0 requests for different processes by providing a
pool of raw I/O headers analogous to the pool of system buffers
available for standard UNIX file 1/0.

One code module containing the LFS routines was added to the

2300 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

UNIX operating system. Of course, the module containing physio
was modified as outlined above. In addition, the physio
modification requires minor changes in several device-handling rou-
tines. Also, several data structures were modified to allow for the
pool of raw I/0 headers and to define the LFS file system structure.
In total, the modifications necessary to install the LFS required about
300 lines of C code to be added or modified.

3.2 MAUS (Multiply Accessible User Space)

MAUS (unpublished work by D. S. DeJager and R. J. Perdue) is a
mechanism that enables processes to share memory. It is not neces-
sary for the general time-sharing environment, but for multipro-
gramming real-time systems such as NOCS it is almost essential.

3.2.1 Overview

MAUS consists of a set of physical memory segments which will be
referred to as MAUS segments; a unique UNIX file name is associated
with each MAUS segment. A MAUS segment is described to the sys-
tem by specifying its starting address (a 32-word block number rela-
tive to the start of MAUS) and its size in blocks (up to 128 blocks or
4096 words). The physical memory allocated for MAUS starts
immediately after the memory used by the UNIX operating system
and is dedicated to MAUS. Any process may access MAUS segments.

A process may access a MAUS segment in two ways. The pre-
ferred MAUS access method is to make the MAUS segment a part of
the process’s address space by using a spare segmentation register.
This method can be used by any process which has at least one
memory segmentation register left after being loaded by the UNIX
operating system.* If the process has no free memory segmentation
registers, then access to the MAUS segment may be obtained under
an alternate method which uses the standard file access routines
such as open, seek, read, and write. The alternate method is
slower than the preferred method and has potential race problems if
more than one process tries to write data into a MAUS segment.

* Each process has a fixed number of memory segmentation registers available for its
use. For processes running on a Digital Equipment Corporation ppp-11/70 under the
UNIX operating system, eight memory segmentation registers are available for map-
ping data and MaUs. Each segmentation register is capable of mapping 4096 words,
i.e., one MAUS segment. One of these registers is always used for the process stack
and at least one other is used for the data declarations within the process. Thus, a
maximum of six segmentation registers are available for accessing MAUS.

NETWORK OPERATIONS CENTER 2301

3.2.1.1 Preferred access method. To access a MAUS segment by
the preferred method, a process must first obtain a MAUS descriptor
using the MAUS routine getmaus in a manner similar to the stan-
dard UNIX open. The UNIX file name associated with the MAUS seg-
ment and the access permissions desired are given in the getmaus
call. getmaus makes the necessary comparisons of the access
desired with the allowable access for the process making the call and
returns either an error or a MAUS descriptor which has been associ-
ated with the requested MAUS segment. A process is allowed to
have up to eight MAUS descriptors at the same time. When a valid
MAUS descriptor is given to the enabmaus routine, a virtual
address, which may be used by the process to access data within
MAUS segment associated with the MAUS descriptor, is returned.
This virtual address is also used to detach the MAUS segment with
the dismaus routine. The MAUS descriptor can be deallocated using
the freemaus routine. Obtaining a MAUS descriptor is very slow
relative to attaching and detaching MAUS segments; thus processes
which cannot simultaneously attach all the MAUS segments they
need to access can still rapidly attach, detach, and reattach MAUS
segments using MAUS descriptors. Any number of processes can
have the same MAUS segment simultaneously attached to their vir-
tual address space.

3.2.1.2 Alternate access method. To use the alternate access
method, the UNIX file name associated with the MAUS segment
desired is opened like any normal UNIX file. The file descriptor
returned can be used by the read or write routines to access the
MAUS segment as if it were a file.

3.2.2 Implementation

One code module containing the MAUS routines and some minor
modifications to several existing functions within the UNIX operating
system were all that was necessary to install MAUS. In addition,
several minor modifications were made to UNIX data structures to
store MAUS segment descriptions and MAUS descriptors. In total,
less than 150 lines of code were added or modified. In the final
analysis, the most difficult part of the MAUS implementation was
arriving at a design which was compatible with existing interfaces
within the UNIX operating system.

IV. STANDARD UNIX FEATURE USAGE

The standard UNIX system provides a complete environment for

2302 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

the entry, compilation, loading, testing, maintenance, documenta-
tion, etc., of software products. It is impossible to categorize all the
ways in which this environment aided in the design and develop-
ment of the NOCS; however, a few examples are illustrated here.

4.1 Development and testing

The same version of the UNIX operating system is used both for
NocS development in the laboratory and for the NOCS application.
In fact, because of the versatility of the UNIX system and the design
of the Nocs software, most of the NOCS system is left running con-
tinuously during software development. New versions of NOCS sub-
systems can be installed without the need for restarting the entire
system. In essence, a continuous test environment exists so that
developers can integrate their programs as soon as module testing is
completed without having to schedule special “system test” time.

4.2 Software administration

The NOCS software is maintained in source form on two UNIX file
systems. One of these file systems is mounted read-only and may
not be modified by software developers; the other initially contains a
copy of the first and is used for software development. Upon com-
pletion of a successful development milestone, an updated version
of the software is moved to the read-only file system by a program
administrator and a new development file system is created. Stan-
dard UNIX utilities are used to keep track of changes between the
read-only and development file systems.

In order to generate the NOCS binary from the source, UNIX shell
procedures have been developed. There is one “build” procedure
for each Nocs subsystem. The procedures are part of the NOCS
software and are administered in the same manner as the rest of the
Nocs software. The structural similarity between the read-only and
development file systems allows the complete testing of software
“build” procedures before they are copied to the read-only file
system.

4.3 System initialization

The standard UNIX init program is used to start the NOCS func-
tions. Each NOCS process is assigned to a run level or to a set of run
levels. When init is told, by an operator, to enter a particular run

NETWORK OPERATIONS CENTER 2303

level, the NOCS processes assigned to that run level are started. The
assignment of processes to run levels is made in such a way that
critical NOCS processes may be isolated both during development and
in the field for testing.

4.4 Documentation

All Nocs documentation is done under the UNIX system. This
documentation consists of a user’s manual which describes the
inputs and outputs for the system and a developer’s guide which is a
description of the NOCS software. The nroff UNIX program along
with Nocs-developed nroff macro packages is used to format the
documentation for printing. The text is entered using the UNIX ed
program and is stored in standard UNIX files.

V. CONCLUSIONS

The NoOcCS system has real-time multiprogramming requirements
that make operating system demands very much counter to the basic
UNIX time-share philosophy. However, these demands were met
quite readily with some feature additions because of the adaptability
and generality inherent in the UNIX operating system. The available
scheduling parameters were flexible enough to handle the three
kinds of scheduling demands; “near” real-time, time-share, and
background, imposed on the UNIX operating system by the NOCS.
The interprocess communication mechanisms were rich and varied
enough that only one addition was necessary to provide all the
features needed by Nocs. The UNIX operating system was modular
enough so that a completely new kind of file system was interfaced
in a very short time with almost none of the timing bugs that might
be expected in a typical operating system. The total UNIX environ-
ment provided software tools to support the complex development
effort needed to implement the NocS. Finally, the use of the same
operating system for both development and application certainly
minimized friction between the coding and testing phases of
development and allowed the smooth integration of all system func-
tions.

2304 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978

